国考资讯网 地方站:
您的当前位置:浙江公务员考试网 >> 行测资料 >> 数量

行测数量关系常见问题解题技巧五十招 4

发布:2010-10-11 10:41:45    来源:浙江公务员考试网 字号: | | 我要提问我要提问
  数量关系:主要考察应考人员对基本数量关系的理解能力、数学运算能力,对数字排列顺序或排列规律的掌握,对数学运算方法、策略的运用能力等。浙江公务员考试专家特总结数量关系常见问题解题技巧供考生参考。考生复习可参考浙江公务员考试专家组织编写最新的《2011年浙江公务员考试综合教材》。
  三十一,十字相乘法
  十字相乘法使用时要注意几点:
  第一点:用来解决两者之间的比例关系问题。
  第二点:得出的比例关系是基数的比例关系。
  第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
  (2007年国考) 某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:
  A .84 分 B . 85 分 C . 86 分 D . 87 分 答案:A
  分析: 假设女生的平均成绩为X,男生的平均Y。男生与女生的比例是9:5。
  男生:Y 9
  75
  女生:X 5
  根据十字相乘法原理可以知道
  X=84
  6. (2007年国考).某高校2006 年度毕业学生7650 名,比上年度增长2 % . 其中本科毕业生比上年度减少2 % . 而研究生毕业数量比上年度增加10 % , 那么,这所高校今年毕业的本科生有:
  A .3920 人 B .4410 人 C .4900人 D .5490 人
  答案:C
  分析:去年毕业生一共7500人。7650/(1+2%)=7500人。
  本科生:-2% 8%
  2%
  研究生:10% 4%
  本科生:研究生=8%:4%=2:1。
  7500*(2/3)=5000
  5000*0.98=4900
  此方法考试的时候一定要灵活运用
  三十二,兔子问题
  An=A(n-1)An(n-2)
  已知一对幼兔能在一月内长成一对成年兔子,一对成年兔子能在一月内生出一对幼兔。如果现在给你一对幼兔,问一年后共有多少对兔子?
  析:1月:1对幼兔
  2月:1对成兔
  3月;1对成兔.1对幼兔
  4;2对成兔.1对幼兔
  5;;3对成兔.2对幼兔
  6;5对成兔.3对幼兔.......
  可看出规律:1,1,2,3,5,8(第三数是前两数之和),可求出第12项
  为:13,21,34,55,89,144,答:有144只兔
  三十三,称重量砝码最少的问题
  例题:要用天平称出1克、2克、3克……40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?
  分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究。
  (1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。
  (2)称重2克,有3种方案:
  ①增加一个1克的砝码;
  ②用一个2克的砝码;
  ③用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内。从数学角度看,就是利用3-1=2。
  (3)称重3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰。
  (4)称重4克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰。总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重。
  (5)接着思索可以进行一次飞跃,称重5克时可以利用
  9-(3+1)=5,即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13(克)以内的任意整数克重。
  而要称14克时,按上述规律增加一个砝码,其重为
  14+13=27(克),
  可以称到1+3+9+27=40(克)以内的任意整数克重。
  总之,砝码重量为1,3,32,33克时,所用砝码最少,称重最大,这也是本题的答案。
  三十四,文示图
  红圈: 球赛。 蓝圈: 电影 绿圈:戏剧。
  X表示只喜欢球赛的人; Y表示只喜欢电影的人; Z表示只喜欢戏剧的人
  a表示喜欢球赛和电影的人。仅此2项。不喜欢戏剧
  b表示喜欢电影和戏剧的人。仅此2项。不喜欢球赛
  c表示喜欢球赛和戏剧的人。仅此2项 不喜欢电影。
  中间的阴影部分则表示三者都喜欢的。我们用 T表示。
  回顾上面的7个部分。X,y,z,a,b,c,T 都是相互独立。互不重复的部分
  现在开始对这些部分规类。
  X+y+z=是只喜欢一项的人 我们叫做 A
  a+b+c=是只喜欢2项的人 我们叫做B
  T 就是我们所说的三项都喜欢的人
  x+a+c+T=是喜欢球赛的人数 构成一个红圈
  y+a+b+T=是喜欢电影的人数 构成一个蓝圈
  z+b+c+T=是喜欢戏剧的人数 构成一个绿圈
  三个公式。
  (1) A+B+T=总人数
  (2) A+2B+3T=至少喜欢1个的人数和
  (3) B+3T=至少喜欢2个的人数和
  例题:学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人。
  通过这个题目我们看 因为每个人都至少喜欢三项中的一项。则我们用三个圈红,绿,蓝代表球赛。戏剧、和电影。
  A+B+T=100 A+2B+3T=148 T=12
  则可以直接计算只喜欢一项的和只喜欢两项的
  A=64 B=24
  典型例题:甲,乙,丙三个人共解出20道数学题,每人都解出了其中的12道题,每道题都有人解出.只有一人解出的题叫做难题, 只有两人解出的题叫做中等题,三人解出的题叫做容易题,难题比容易题多( )题?
  A、6 B、5 C、4 D、3
  【解析】第三题需要结合文氏图来理解了,画图会很清楚的
  我们设a表示简单题目, b表示中档题目 c表示难题
  a+b+c=20
  c+2b+3a=12×3 这个式子式文氏图中必须要记住和理解的
  将a+b+c=20变成 2a+2b+2c=40 减去 上面的第2个式子
  得到: c-a=4 答案出来了
  可能很多人都说这个方法太耗时了,的确。在开始使用这样方法的时候费时不少。当当完全了解熟练运用a+2b+3c这个公式时,你会发现再难的题目也不会超过1分钟。三十四,九宫图问题
  此公式只限于奇数行列
  步骤1:按照斜线的顺序把数字按照从小到大的顺序,依次斜线填写!
  步骤2: 然后将3×3格以外格子的数字折翻过来,
  最左边的放到最右边,最右边的放到最左边
  最上边的放到最下边,最下边的放到最上边
  这样你再看中间3×3格子的数字是否已经满足题目的要求了
  三十五,用比例法解行程问题
  行程问题一直是国家考试中比较重要的一环,其应用之广恐无及其右者。行程问题的计算量按照基础做法不得不说非常大。所以掌握简单的方法尤为重要。当然简单的方法需要对题目的基础知识的全面了掌握和理解。
  在细说之前我们先来了解如下几个关系:
  路程为S。速度为V 时间为T
  S=VT V=S/T T=S/V
  S相同的情况下: V跟T成反比
  V相同的情况下: S跟T成正比
  T相同的情况下: S跟V成正比
  注:比例点数差也是实际差值对应的比例! 理解基本概念后,具体题目来分析
  例一、甲乙2人分别从相距200千米的AB两地开车同时往对方的方向行驶。到达对方始发点后返回行驶,按照这样的情况,2人第4次相遇时甲比乙多行了280千米 已知甲的速度为60千米每小时。则乙的速度为多少?
  分析:这个题目算是一个相遇问题的入门级的题目。我们先从基础的方法入手,要多给自己提问 求乙的速度 即要知道乙的行驶路程S乙,乙所花的时间T乙。这2个变量都没有告诉我们,需要我们去根据条件来求出:
  乙的行驶路程非常简单可以求出来。因为甲乙共经过4次相遇。希望大家不要嫌我罗嗦。我希望能够更透彻的把这类型的题目通过图形更清晰的展现给大家。
  第一次相遇情况
  A(甲).。。。。。。。。。。。。。。。。。。。。(甲)C(乙)。。。。。。。。。。。。。。。。。。。。。。B(乙)
  AC即为第一次相遇 甲行驶的路程。 BC即为乙行驶的路程
  则看出 AC+BC=AB 两者行驶路程之和=S
  第2次相遇的情况
  A.。。。。。。。。。。。。。。。。。。。(乙)D(甲)。。。。。。C。。。。。。。。。。。。。。。。。。。。。。。。。。B
  在这个图形中,我们从第一次相遇到第2次相遇来看甲从C点开始行驶的路线是C-B-D,其路程是 BC+BD
  乙行驶的路线则是C-A-D 其行驶的路程是AC+AD
  可以看出第2次相遇两者的行驶路程之和是BC+BD+AC+AD=(BC+AC)+(BD+AD)=2S ,同理第3,4次相遇都是这样。
  则我们发现 整个过程中,除第一次相遇是一个S外。其余3次相遇都是2S。总路程是2×3S+S=7S
  根据题目,我们得到了行驶路程之和为7×200=1400
  因为甲比乙多行驶了280千米 则可以得到 乙是(1400-280)÷2=560 则甲是560+280=840
  好,现在就剩下乙的行驶时间的问题了。因为两个人的行驶时间相同则通过计算甲的时间得到乙的时间 即 840÷60=14小时。
  所以T乙=14小时。 那么我就可以求出乙的速度V乙=S乙÷T乙=560÷14=40
  说道这里我需要强调的是,在行程问题中,可以通过比例来迅速解答题目。
  比例求解法:
  我们假设乙的速度是V 则根据时间相同,路程比等于速度比,
  S甲:S乙=V甲:V乙 衍生出如下比例:(S甲+S乙):(S甲-S乙)=(V甲+V乙):(V甲-V乙)
  得出 1400:280=(60+V):(60-V)解得 V=40
  例二、甲车以每小时160千米的速度,乙车以每小时20千米的速度,在长为210千米的环形公路上同时、同地、同向出发。每当甲车追上乙车一次,甲车减速1/3 ,而乙车则增速1/3 。问:在两车的速度刚好相等的时刻,它们共行驶了多少千米?
  A. 1250 B. 940 C. 760 D. 1310
  【解析】 我们先来看 需要多少次相遇才能速度相等
  160×(2/3)的N次方=20×(4/3)的N次方 N代表了次数 解得N=3 说明第三次相遇即达到速度相等
  第一次相遇前: 开始时速度是160:20=8:1 用时都一样,则路程之比=速度之比
  我们设乙行驶了a千米 则 (a+210 ) : a = 8:1 解得 a=30
  第二次相遇前: 速度比是 甲:乙=4:1 用时都一样, 则路程之比=速度之比
  我们设乙从第1次相遇到第2次相遇行驶了b千米 则 (b+210 ) : b = 4:1 解得 a=70
  第三次相遇前:速度比是 甲:乙=2:1 用时都一样, 则路程之比=速度之比
  我们设乙从第2次相遇到第3次相遇行驶了c千米 则 (c+210 ) : c = 2:1 解得 c=210
  则三次乙行驶了 210+70+30=310千米
  而甲比乙多出3圈 则甲是 210×3+310=940
  则 两人总和是 940+310=1250
  例三、一辆汽车以每小时40千米的速度从甲城开往乙城,返回时它用原速度走了全程的4分之3多5米,再改用每小时30千米的速度走完余下的路程,因此,返回甲城的时间比前往乙城的时间多用了10分钟,甲、乙两城相距多远?
  【解析】我们知道多出来的10分钟即1/6小时是在最后1/4差5千米的路程里产生的 ,则根据路程相同
  速度比等于时间比的反比
  即 T30:T40=40:30=4:3
  所以30千米行驶的最后部分是用了 1/6×(4-3)×4=2/3小时
  即路程是30×2/3=20千米
  总路程是(20+5)÷1/4=100
  例四、甲乙两人各坐一游艇在湖中划行,甲摇浆10次时乙摇浆8次,而乙摇浆70次,所走的路程等于甲摇浆90次所走的路程,现甲先摇浆4次,则乙摇浆多少次才能追上?
  A. 14 B.16 C.112 D.124
  【解析】 甲摇浆10次时乙摇浆8次 知道甲乙速度之比=5:4
  而乙摇浆70次,所走的路程等于甲摇浆90次所走的路程 则可以得到每浆得距离之比是甲:乙=7:9
  所以,我们来看 相同时间内甲乙得距离之比,5×7:4×9=35:36
  说明,乙比甲多出1个比例单位
  现在甲先划桨4次, 每浆距离是7个单位,乙每浆就是9个单位, 所以甲领先乙是4×7=28个单位 ,事实上乙每4浆才能追上36-35=1个单位,
  说明28个单位需要28×4=112浆次追上! 选C
  例五、甲乙两个工程队共100人,如果抽调甲队人的1/4至乙队,则乙队比甲队多了2/9,问甲队原来多少人?
  这个题目其实也很简单,下面我说一个简单方法
  【解析】 根据条件乙队比甲队多了2/9 我们假设甲队是单位1,则乙队就是1+2/9=11/9 ,100人的总数不变
  可见 甲乙总数是1+11/9=20/9 (分母不看)
  则100人被分成20分 即甲是100÷20×9=45 乙是 55
  因为从甲队掉走1/4 则剩下的是3/4 算出原来甲队是 45÷3/4=60
  三十六,计算错对题的独特技巧
  例题:某次考试有30道判断题,每做对一道题得4分,不做的不得分,做错一道题倒扣2分 小明得分是96分,并且小明有题目没做,则小明答对了几道试题()
  A 28 B 27 C 26 D25 正确答案是 D 25题
  我们把一个答错的和一个不答的题目看成一组,则一组题目被扣分是6+4=10
  解释一下6跟4的来源
  6是做错了不但得不到4分还被扣除2分 这样里外就差4+2=6分
  4是不答题 只被扣4分,不倒扣分。
  这两种扣分的情况看着一组
  目前被扣了30×4-96=24分
  则说明 24÷10=2组 余数是4
  余数是4 表明2组还多出1个没有答的题目
  则表明 不答的题目是2+1=3题,答错的是2题
  三十七,票价与票值的区别
  票价是P( 2,M) 是排列 票值是C(2,M)
  三十八,两数之间个位和十位相同的个数
  1217到2792之间有多少个位数和十位数相同的数?
  从第一个满足条件的数开始每个满足条件的数之间都是相差11
  方法一:
  看整数部分1217~2792
  先看1220~2790 相差1570 则有这样规律的数是1570÷10=157个
  由于这样的关系 我总结了一个方法 给大家提供一个全新的思路
  方法二:
  我们先求两数差值 2792-1217=1575
  1575中有多少11呢 1575÷11=143 余数是2
  大家不要以为到这里就结束了 其实还没有结束
  我们还得对结果再次除以11 直到所得的商小于11为止
  商+余数再除以11
  (143+2)÷11=13 余数是2
  (13+2)÷11=1 因为商已经小于11,所以余数不管
  则我们就可以得到个数应该是143+13+1=157
  不过这样的方法不是绝对精确的,考虑到起始数字和末尾数字的关系。 误差应该会在1之间!不过对于考公务员来说 误差为1 已经可以找到答案了!
  三十九,搁两人握手问题
  某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次, 请问这个班的同学有( )人
  A、16 B、17 C、18 D、19
  【解析】此题看上去是一个排列组合题,但是却是使用的对角线的原理在解决此题。按照排列组合假设总数为X人 则Cx取3=152 但是在计算X时却是相当的麻烦。 我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际握手次数是x×(x-3)÷2=152 计算的x=19人
  四十,溶液交换浓度相等问题
  设两个溶液的浓度分别为A%,B%并且 A>B 设需要交换溶液为X
  则有:(B-X):X=X:(A-X)
  A:B=(A-X):X
  典型例题:两瓶浓度不同得盐水混合液。60%的溶液是40克,40%的溶液是60克。要使得两个瓶子的溶液浓度相同,则需要相互交换( )克的溶液?
  A、36 B、32 C、28 D、24
  【解析】答案选D 我们从两个角度分析一下,假设需要交换的溶液为a克。则我们来一个一个研究,先看60%的溶液 相对于交换过来的a克40%的溶液 可以采用十字交叉法来得出一个等式 即(再设混和后的标准浓度是p)
  40-a :a=(P-40% ) :(60%-P)
  同理我们对40%的溶液进行研究 采用上述方法 也能得到一个等式:
  60-a :a=(60%-P) :(P-40%)
  一目了然,两者实际上是反比,即40-a :a=a :60-a 解得 a=24 即选D
  如果你对十字交叉法的原理理解的话 那么这个题目中间的过程完全可以省去。所以说任何捷径都是建立在你对基础知识的把握上。
  解法二: 干脆把2个溶液倒在一起混和,然后再分开装到2个瓶子里 这样浓度也是相等的。我们根据十字交叉法 ,60跟40的溶液混合比例 其实跟交换的x克60%溶液与剩下60-x克40%的溶液比例成反比,则60:40=60-x:x解 X=24克

  推荐阅读:
  行测数量关系常见问题解题技巧五十招 3

点击分享此信息:
RSS Tags
返回网页顶部
CopyRight 2019 http://www.zjgkw.org/ All Rights Reserved 苏ICP备16053291号-2
(任何引用或转载本站内容及样式须注明版权)XML