国考资讯网 地方站:
您的当前位置:浙江公务员考试新消息 >> 行测资料 >> 数量关系

浙江行测数量关系,生活中的等差数列

发布:2024-05-29 11:01:46 字号: | | 我要提问我要提问
\ 浙江公务员考试行测数量关系技巧

  从小到大我们在学习数学这一门学科的过程中,总会觉得在实际生活里的用处不大,买菜的时候可能也不会考察我们对数字的敏感程度,吃饭的时候也不会去求一张饼的面积有多大,但其实数学的思维和思考的逻辑却是贯穿于生活之中的,可以解决很多实际的问题。例如等差数列这一个知识点在生活中也是经常出现的。
\ 数量关系例题讲解

  什么是等差数列呢?它指的是对于一列数而言,从第二项开始,每一项与前一项的差,都是一个固定的常数,这样的数列就叫做等差数列,相差的差值,这个固定的常数叫做公差。例如:1,3,5,7,9……这一组数从第二项开始,往后每一项与前一项的差值都是固定的常数2,则这一组数就是公差为2的等差数列。通常情况下,关于等差数列容易考察对于通项公式和求和公式的理解和应用。

  例1:某个月有五个星期六,已知这五个日期的和为85,则这个月中最后一个星期六是多少号

  A.10

  B.17

  C.24

  D.31

  【答案】D。由于每过一个星期,日期数都会加七,因此第二个星期六,它的日期数比第一个星期六的日期数多七,第三个星期六的日期数比第二个星期六的日期数多七,则一个月之中连续的星期六,他们的日期数就形成了彼此差七的等差数列。已知这五个日期之和为85,则根据等差数列中项的求和公式可以直接求出五项的中间项,即第三项的数值为85÷5=17,说明第三个星期六的日期为17号,想去求最后一个星期六即是第五个星期六的日期,需要在第三个星期六,17号的基础上再过两个星期,加上两倍的公差得到,为17+2×14=31号。选择D选项。

  例2:国际象棋棋盘为64方格,用铅笔从第一格开始填写1,第二格填写2,第三格填写3,以此类推至64,然后用橡皮将所有能被3整除的数全部擦掉,所剩数字的总和是多少

  A.2408

  B.1387

  C.1408

  D.1487

  【答案】B。如果从正向思考,找出剩余的数字,再将其加和,计算的过程会比较复杂。因此我们想,所有的数字之和,该是由两部分组成,一部分是所有能被3整除的数字之和,另一部分就是我们所要求的剩余数字总和。因此可以用整个棋盘1到64,这64个数字之和,再减去能够被3整除的数的数字之和去求解。分析这两组数列的特征,第一组:1至64,是一组连续的自然数,即公差为1的等差数列,想要求解前64项的和,可以套用基本的求和公式,首项为1,末项为64,项数也是64,则和为(1+64)×64÷2=2080:;第二组64以内能被3整除的数:应该为3的1倍,2倍,3倍……n倍,且n倍的数值应该小于等于64,则可求出n最大为21,每两个相邻的能被3整除的数彼此差3,由此形成了首项为3,末项为63,项数为63÷3=21项的等差数列,则和为(3+63)×21÷2=693,最后两部分作差为2080-693=1387,选择B选项。

  这些都是等差数列在生活中的具体体现,只要分析出数列的特征,找到相应的已知条件,结合公式套入求解就变得简单了。
 
\ 更多行测技巧与方法扫码获取

行测浙江资料
\ 技巧还没掌握?扫码回复“咨询老师”
 
\
\
 
\
扫码关注我们
更多精彩等待你发现 
 
 \ 浙江公务员考试行测数量关系技巧

  行测考试的难度是不容小觑的,而在种种的题型中,数量关系成为很多考生的“心病”。今天,小编就带大家来了解一种治疗这种“心病”的良药——方程法。方程法解数学应用题基本贯穿了我们从小到大的数学生涯,而想要用方程解题,寻找等量关系是重中之重的一步。找等量关系可以分成几种不同的情况:
\ 例题讲解,做好笔记

  一、根据题干的描述找等量关系

  例1、甲乙两个单位的人数相同,甲单位党员人数占总人数的20%,乙单位的党员人数占总人数的25%,如果乙单位的20名党员与甲单位的20名群众互换单位则两个单位的党员占比相同。问两个单位共有党员多少人

  A.256

  B.288

  C.324

  D.360

  【答案】D。解析:设甲乙两个单位总人数皆为x,则甲单位党员人数为20%x,乙单位党员人数为25%x。根据“乙单位的20名党员与甲单位的20名群众互换单位则两个单位的党员占比相同”,交换完毕后两个单位的总人数并不发生变化,占比相同代表党员人数相同,可以列出20%x+20=25%x-20,解得x=800,则甲单位党员人数为160,乙单位的党员人数为200,总党员人数为360,故选D。

  其实根据题目中的一些描述即可找到等量关系,比较常见的描述有:……与……相同(等)、……与……共、……比……多(少)、……是……倍数(百分之几)等等,总结来说就是能说明数量之间关系的语句。找到等量关系后,按部就班设未知数解方程即可解题了。

  二、题目中描述了不同方案,根据不同方案中的不变量找等量关系

  例2、某企业员工组织周末自驾游。集合后发现,每辆小车坐5个人,则空出4个座位;如果每辆小车少坐一个人,则有8人没有上车。那么自驾游小车共有多少辆

  A.9

  B.10

  C.11

  D.12

  【答案】D。解析:题目中两种乘车方案中,总人数不变,可以根据两种方案的总人数相等列方程。设:共有x辆车。5x-4=4x+8,解得x=12,则共有12辆小车,故选D。

  类似于这类题目,给出不同的方案,我们就可以找到不同方案中的不变量。根据不同方案中该不变量相等这个等量关系列方程解题。

  三、根据常见公式找等量关系

  例3、小李四年前投资的一套商品房价格上涨了50%,由于担心房价下跌,她将该商品房按市场价的9折出售,扣除成交价5%的相关交易费用后,比买进的时候赚了56.5万元。那么,小李买进该商品房时花了多少万元?

  A.200

  B.250

  C.300

  D.350

  【答案】A。解析:设:买房时的成本为x万元。根据总收入-总成本=利润的公式,可以列出1.5x×90%×(1-5%)-x=56.5,解得x=200,故选A。

  这道题目就是根据利润问题中的基本公式找到的等量关系列出方程解决的问题。类似可能涉及到的题型还有:工程问题,行程问题,浓度问题等等。需要大家好好记住相关题型的公式,对于我们解题十分有帮助。

  小编希望大家在行测学习过程中自己多加练习,因为数学题目与其他的各种学习一样,都需要量变积累到质变的过程。想要有提升必须付出相应的努力。希望大家达成所愿,成就美好人生。
 
\ 更多行测技巧与方法扫码获取

行测浙江资料
\ 技巧还没掌握?扫码回复“咨询老师”
 
\
\
 
\
扫码关注我们
更多精彩等待你发现 
 
   
点击分享此信息:
没有了   |   下一篇 »
RSS Tags
返回网页顶部
CopyRight 2024 http://www.zjgkw.org/ All Rights Reserved 苏ICP备16053291号-2
(任何引用或转载本站内容及样式须注明版权)XML